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Motivation for an “All Digital Radio”
Dr. Mitola more than 20 years ago

The ideal software radio interoperates with any communications 
service in its RF preselector band and A/D bandwidth. […], the software 
radio instantly reconfigures itself to the appropriate signal format. […] A 
future software radio might autonomously select the best transmission 
mode ([…]), send probing signals to establish a link, explore 
communications protocols with the remote end and adapt to the remote 
signal format. 
It could select the 
mode for lowest 
cost, service 
availability or 
best signal 
quality.

J. Mitola, Software Radios Survey, Critical Evaluation and Future Directions, 1993



© Fraunhofer IIS 3

Motivation for an “All Digital Radio”
Moore‘s Law for digital signal processing

http://education.mrsec.wisc.edu/SlideShow/images/computer/Moores_Law.png

Transistor density on an IC
is doubling every 2 years 
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WILL THERE BE THE ALL DIGITAL RADIO IN 
THE FUTURE?

 Motivation for an “All Digital Radio”

 Limitations of the “All Digital Radio”

 Dynamic range requirements

 Performance of key components

 Dynamic range enhancement technologies

 Have a look into the future …

 Beyond analog versus digital

 Examples

 Conclusion



© Fraunhofer IIS 5

Requirements on a direct sampling RX frontend
Example: GSM BTS Out-of-band blocking requirement
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Performance of state-of-the-art high-speed ADCs
SNR at max. measured frequency (from datasheet)
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Published data from ISSCC and VLSI conferences

aus B. Murmann, "ADC Performance Survey 1997-2014," [Online].
available: http://www.stanford.edu/~murmann/adcsurvey.html.
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Requirements on a direct sampling RX frontend
Example: GSM BTS Out-of-band blocking requirement
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Enhancement of ADC dynamic range
Signal averaging with parallel ADCs

Idea:

 Signal sums coherently
2 ADCs => 6 dB more level

 Noise is uncorrelated and sums 
on an RMS basis
2 ADCs => 3 dB more Noise

 Gain of 3 dB in SNR with every
doubling of the number of ADCs

 High demands on phase
and amplitude errors
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Enhancement of ADC dynamic range
Signal averaging with parallel ADCs

 According to Lauritzen: 

= aperture jitter and 
= clock jitter

 Clock jitter is correlated and 
limits the improvement with 
higher input frequency

 Example:
aperture jitter = 75 fs
clock jitter = 100 fs
SNR of the single ADC = 82 dB

SNR
1

∙ SNR
∙

	 ∙
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Enhancement of ADC dynamic range 
Stacked ADC

 2 or more parallel ADCs sampling
simultaneously the input signal with the same clock

 Attenuators causing different drive level of the ADCs

 If one ADC is overloaded, the sample will be taken from the next, not 
saturating ADC => switching AGC on a sample by sample basis
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single ADC
4 Stacked ADCs

Stacked ADCs
Simulation results with OFDM interferer (10 kHz wide, 
12.7 dB PAPR)
Almost 6 dB SNR improvement with doubling of number of ADCs

Single 
ADC

2 Stacked 
ADCs

4 Stacked 
ADCs

Noise level* -126.9 dB -132.6 dB -138.2 dB

SFDR* -101.2 dB -107.8 dB -118.8 dB

* in reference to PEP
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Reduction of interferer level
Feedforward interference cancellation

 Cancellation of Interferer before analog-to-digital conversion

 Most critical: adaptive filter and delay line

 Only a single interferer can be cancelled

 Details: Jing Yang, “Time Domain Interference Cancellation for Cognitive 
Radios and Future Wireless Systems”
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DAC performance
Example: 14 bit at 5.7 GSa/s

 Frequency range: 
DC … 4.2 GHz

 Reasonable power 
consumption: 
1,3 W at full data rate

 SFDR @ 950 MHz:
-55 dBc

 2-tone IMD @ 950 MHz
-76 dB

 Noise spectral density:
-157 dBm/Hz @ 850 MHz
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Transmitter dynamic range requirement
Whiteband noise

 DAC output power e.g. 10 mA in 100 Ω: 13 dBm

 GSM BTS with 20 W: 30 dB gain

 Wideband noise power: -127 dBm/Hz
in 200 kHz: -73 dBm (noise figure of amplifier not considered)

 For TDD applications: o.k.

 For FDD applications or cosited RX: 

to RX

from TX
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Reduction von TX noise in RX path
Noise and interference canceller

 In FDD, the own TX might be
the strongest interferer.

 With a wideband cancellation
loop, the transmitted signal
AND the wideband noise can be
reduced to gain some sensitivity
at the receiver.
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Reduction of interferer level
Reconfigurable filters

 3 coupled resonators tuned by
digitally tuned capacitors

 3-wire SPI

 Tuning range 470 ... 930 MHz

 Drop-in module
20 mm x 20 mm
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Continuous 
amplitude

Discrete
amplitude

Discrete time

Continuous time

Do we need “digital” do benefit from Moore’s Law?
There might be more than just digital or analog …

analog 
signal ?

digital 
signal?
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Discrete time, continuous amplitude
Example: Sampling IF filter technology

Seste Dell‘Aera, Tom Riley, 
„Sampling IF filters and the return 
of the Superheterodyne Receiver”, 
Microwave Journal 2005

analog FIR filter, 

up to 900 MHz
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Discrete amplitude, continuous time
Example: Fully Digital Multimode Polar Transmitter

Zdravko Boos, et.al., „A Fully 
Digital Multimode Polar 
Transmitter Employing 17b RF 
DAC in 3G Mode”, ISSCC 2011

EDGE TX spectrum
@ 1907 MHz
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CONCLUSION

 Digital HW getting still smaller, more power efficient, cheaper according 
to Moore’s Law => Fully Digital Radio is attractive

 A-to-D / D-to-A converters evolve, but still limiting the performance

 Fully Digital Radio can be a good solution for certain application in the 
future, but is not necessarily the best concerning price, power 
consumption and performance

 Fully Digital Radio will not be THE solution for all applications in the near 
future (e.g. FDD)

 There might be more than just analog or digital 
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